Sanitary Sewer Design and Modeling Workshop

Featuring Bentley Systems SewerGEMS

Slavco Velickov, PhD Bentley Systems

Scope

- Steady hydraulics
- Model building
- Unsteady hydraulics
- Hydrology
- Dry weather loading
- Sanitary sewers
- Combined Sewers
- Designing new systems

- Pumps and force mains
- Pressure sewers
- Transient analysis
- Monitoring/rehab
- Geospatial data
- Load building
- Water quality

Sanitary Sewer System Overview

- Convey wastewater to treatment
- In some cases stormwater is also conveyed
- Primary components are:
 - gravity pipes
 - connecting manholes or access chambers
 - pump stations and pressure mains
- Most systems designed for gravity flow

Types of Conveyance

- Gravity flow
- Surcharged gravity flow
- Inverted siphons
- Pressure flow in force mains
- Pressure sewers
- Vacuum sewers

Applications of Collection System Models

- Design
- Long-range master planning
- Rehabilitation studies
- Operational problems
- Regulatory compliance
- "What if?" scenarios

Temporal Considerations

- Steady State
 - Used for design work
 - Typically concerned with extreme conditions
 - Snap shots of the system in time
- Unsteady (extended period)
 - Used when pumps cycling or storage in system are significant
 - Routing hydrographs through system

The Modeling Process

Types of Flow

- Open Channel Flow
 - Flow with free surface exposed to atmosphere
- Pressure or Pipe Flow
 - Flow in closed conduit under pressure

Wastewater

- Incompressible
- Turbulent
- Newtonian Fluid
- Obeys Newton's Law of Viscosity
- In typical wastewater, solids don't significantly affect viscosity
- Waste activated sludge still Newtonian
- Thickened sludge not Newtonian

FLOW

- Volume/time
- m³/s cubic metres/second (SI)
- L/s litres/second
- m³/hr cubic metres/hour
- ft³/s cubic feet/second (FPS)
- gpm gallons/minute
- MGD million gallons/day
- ac-ft/day acre-feet/day
- cufr/frtnt cubic furlongs/fortnight

PRESSURE

- Force/Area
- Newton/square metre Pascal (SI)
- kPa kiloPascal
- bar 100 kPa
- psf pound/square foot (FPS)
- psi pound/square inch (US typical)
- atm atmosphere (14.7 psi)
- pound?
- Gage vs. absolute

Flow Classification Scheme

Uniform

Nonuninform

Steady

Normal depthManLong channelBacl

Manholes Backwater

Unsteady

Pump cycling Wet weather

Conservation Equations

- Conservation Principles
 - Mass
 - Energy
- Conservation of Mass requires that
 - Inflow Outflow = Rate of change in storage
 - If Inflow = Outflow, no storage occurs
 - If Inflow > Outflow, excess is stored
 - If Inflow < Outflow, water level drops</p>

Velocity and Flow

- Velocities vary across flow giving a velocity profile.
- In practical applications, average velocity can be used:

$$V = \frac{Q}{A}$$

- V = average fluid velocityQ = pipeline flow rateA = cross-sectional area of flow
- Substituting the cross-sectional area of a full circular pipe the equation becomes:

$$V = \frac{4Q}{\pi D^2}$$

Conservation of Energy

- Water flows from a region of higher energy to a region of lower energy
- Energy terms are typically expressed as head
- Consider the energy terms for pressurized pipe flow

Conservation of Energy

For steady, incompressible full pipe flow steady

$$\frac{P_1}{\gamma} + z_1 + \frac{v_1^2}{2g} = \frac{P_2}{\gamma} + z_2 + \frac{v_2^2}{2g} + h_f$$

p = fluid pressure $\gamma = specific weight of fluid$ Z = elevation above an arbitrary datum planeV = fluid velocity, averaged over a cross-sectiong = acceleration of gravity $h_f = headloss due to friction$

Conservation of Energy

- For open channel flow, pressure head is expressed in terms of depth of flow (y)
- The energy equation for open channel flow is:

$$y_1 + z_1 + \frac{v_1^2}{2g} = y_2 + z_2 + \frac{v_2^2}{2g} + h_f$$

Energy Grade Lines

Total energy at-a-point in the fluid system

Pipe flow:
$$EGL = \frac{P}{\gamma} + z + \frac{v^2}{2g}$$

Open channel flow:
$$EGL = y + z + \frac{v^2}{2g}$$

Hydraulic Grade Lines

Sum of the pressure and elevation head terms at-a-point

Pipe flow :
$$HGL = \frac{P}{\gamma} + z$$

Open channel: HGL = y + z

Friction Head Loss Equations

- Energy is used to overcome friction and/turbulence
- Several equations are available to calculate head loss:
 - Manning
 - Darcy-Weisbach
 - Kutter/Chezy
 - Hazen-Williams
- Most head losses is wall friction
- Minor losses often small in comparison

Manning's Equation

Most commonly used in US

$$Q = \frac{k}{n} A R_h^{2/3} S^{1/2}$$

 $\begin{array}{l} k = 1.49 \mbox{ for U.S. customary units and 1.0 for SI units} \\ A = cross sectional area of flow \\ R_h = Hydraulic radius \\ S = slope of the energy line = S_o \mbox{ for uniform flow} \\ n = Manning's roughness coefficient \\ \end{array}$

Manning's Equation

Manning's n-value is viewed as a roughness coefficient, but it is actually influenced by many factors:

- Wall roughness Depth of flow
- Viscosity
- Diameter
- Velocity

- Obstructions
- Stage and Discharge
- Silting and Scouring

Darcy-Weisbach Equation

Widely used – theoretically correct

$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

h_f = headloss
f = Darcy-Weisbach friction factor
L = pipe length
V = average pipe velocity
g = gravitational constant

Moody Diagram

f

Reynolds Numbe

Kutter/Chezy Equation

Sometimes used in various parts of the world

$$V = C\sqrt{R_h S}$$

V = Mean velocity (ft/s, m/s)
C = Roughness coefficient
R = Hydraulic radius (ft, m)
S = Friction slope (ft/ft, m/m)

Hazen-Williams Equation

Frequently used in North America for pressure

$$h_L = \frac{C_f L}{C^{1.852} D^{4.87}} Q^{1.852}$$

 h_L = pipe friction head loss

L = pipe length

C = Hazen-Williams C factor

- D = diameter
- Q = flow rate
- C_f = unit conversion factor

Minor Losses

Any feature that causes the flow to accelerate, decelerate, change direction, or change crosssectional area results in loss of energy. Minor losses typically occur in sewer systems at manholes

$$h_{M} = K_{M} \frac{v^{2}}{2g}$$

 h_m = the minor head loss K_m = a minor loss coefficient

Minor Losses

- Minor losses occur at manholes, where there are entrance and exit losses and changes in flow direction
- Values of K_m for manholes range from 0.5 to 1.0
- Methods for calculating junction losses in SewerCAD
 - Absolute
 - Standard
 - Generic
 - HEC-22 Energy
 - AASHTO

Specific Energy

 Specific Energy (E) - total energy at-a-point (cross-section) in open channel flow with respect to channel bed:

$$E = y + \frac{v^2}{2g}$$

For a given discharge Q = V*A

$$E = y + \frac{Q^2}{2g A^2}$$

Specific Energy

Plot of the depth of flow vs. specific energy for a 12 inch pipe (y_c is the critical depth)

Froude Number

- Dimensionless parameter to classify open channel flow
- The Froude Number is equal to 1 at critical depth

$$\mathbf{F} = \frac{V}{\sqrt{gD_h}}$$

- Classification of flow:
 - Depth of flow is higher than y_{c} , F < 1, flow is subcritical
 - Depth of flow is equal to y_{c} , F = 1, flow is critical
 - Depth of flow is lower than $y_{c.}$ F > 1, flow is supercritical

Non-Uniform Flow

Most channels are non-prismatic

- Sanitary sewers are non-prismatic due to
 - Presence of manholes
 - Changes in pipe diameter, slope and direction
- Flow may be non-uniform in a prismatic channel due to the influence of a control
 - Backwater created by a high tailwater depth
 - Drawdown at a free outfall

Control

- A channel feature (structural) with a unique (1:1) relationship between depth and discharge
 - Free overfall at the end of a mild channel
 - Weirs and Flumes (critical controls)
 - Long prismatic channel (control reach)
- Regulates (controls) the state of flow
 - Subcritical flow is controlled by downstream conditions
 - Supercritical flow is controlled by upstream conditions

Nonuniform flow controls

Weir

Change in slope

Channel Classification

- Channel bed slopes are classified hydraulically as *mild*, *steep*, *critical*, *horizontal* or *adverse*
- For a given flow rate, the bed slope is called:
 - Mild if $y_n > y_c$
 - Steep if $y_c > y_n$
 - Critical if $y_n = y_c$

Assembling the Model
Data Requirements

- Network layout (system data)
- Hydraulic properties
- Sanitary flows (dry weather)
- Inflow and infiltration (wet weather)
- Operation data
- Calibration data

Network Data- System Layout

Data

- coordinates of each pipe segment and manhole
- locations of wet wells, pumps, appurtenances
- pipe connectivity, lengths
- pipe diameters, materials
- pipe invert levels and manhole elevations

- maps paper/CAD
- construction/as-built drawings
- corporate GIS system
- asset-management systems
- work orders
- field survey

Hydraulic Properties

Data

- pipe roughness
- pump curves

- manufacturers' specifications
- contractor submittals
- literature values
- field tests

Sanitary Flows- Dry Weather

Data

- location of each source
- min, max, mean daily flows
- diurnal patterns
- projections

- metering
- maps, aerial photos
- census data

Inflow and Infiltration- Wet Weather

Data

- infiltration rate for each pipe segment or sub-basin
- locations of inflows
- quantities of inflow

- field inspection
- measurements
- analysis of treatment plant flows
- hydrologic analysis
- literature values

Operation Data

Data

- settings for pump operation
- settings of flow-control structures
- control strategies
- outlet controls

- interviews with operations personnel
- operations records and manuals
- field inspection

Calibration Data

Data

- recorded depth, rate of flow
- frequency/locations of overflows
- Precipitation data

- field inspection and measurements
- operations records
- weather records
- flow-monitoring program

Types of Simulations

Steady

EPS

Dry

Sizing, Good system Design Check

Wet

Sizing, I/I system Overflows, troubleshooting

Defining Gravity Pipes

- Internal diameter
- Length (schematic or scaled)
- Material
- Roughness as Manning's n
- Shape
- Invert elevations (set to upstream/do pipe)
- Number of sections

Siphons (Depressed sewers)

- Designed dip in a gravity sewer
- Occurs when sewer must pass under structures
- Sewer line is below the HGL, full, and under pressure
- Designed with smaller pipes to maintain self-cleaning velocities

Defining Manholes

- Invert elevation- bottom of pipe entering manhole
- Rim elevation
- Structure size- common diameter in US is 4 ft
- Drop manhole- incoming sewage transported down vertical shaft

Junction Chamber

- Model special underground structures
- No loading
- Input parameters necessary to physically define a junction chamber are:
 - Coordinates
 - Ground Elevation
 - Structure Diameter
 - Top Elevation
 - Bottom Elevation

Defining Outlets

- Represents treatment plant, pump station, CSO, SSO or end of study area
- Specify tailwater depth
 - Known tailwater
 - Full pipe
 - Critical depth
- Critical depth appropriate when pipe freely discharges

MODELING PRACTICE

- Data Entry
 - Frequent checking
 - Trial runs and GUI can show major data entry errors
- Using Model
 - Plan runs before you make them
 - Try different scenarios and alternatives
 - Keep track of runs and backup files
- Ongoing Practices
 - Large initial investment in modeling and training
 - Keep good records
 - "Hit by a truck" principle so train others

TRADITIONAL METHOD OF MANAGING RUNS

SCENARIO MANAGER TERMINOLOGY

- Scenario = single run of model

 contains type of run
 pointers to alternative data
- Alternatives = data set
 - -building block of scenarios
- Inheritance = building alternatives and scenarios from previous

SCENARIO MANAGER

Alternatives -Topology -Physical -Boundary Conditions -Initial Conditions -Hydrology -Output -Rainfall – runoff -Water quality -User data extensions

TOPOLOGICAL ALTERNATIVES

Make individual elements active or inactive Great for "future" scenarios

Getting at Results

- Property grid
- Flex tables
- Graphing
- Color coding
- Annotation
- Profiling

Managers

- Scenario
- Alternatives
- Calc Options
- Graphs
- Profiles
- Symbology
- Animation

- Selection sets
- Queries
- Drawing navigator
- Backgrounds
- Prototypes
- Flex Tables

Unsteady Flow Hydraulics

What does SewerGEMS do?

Given: System map Physical properties Loading data (Water Quality) Determines: Flow, velocity, depth in each conduit Level in each manhole, pond, tank (water Quality)

Evolution of Models

<u>Sanitary</u>

Steady State

SewerCAD

Simple Routing

SewerCAD EPS StormCAD

Stormwater

Pond Pack StormCAD

Fully Dynamic (St. Venant)

SewerGEMS

Civil Storm

Elements

- Point
 - Manhole
 - Pressure junction
 - Cross section
 - Junction chamber
 - Catch basin
 - Pump
 - Wet well
 - Pond outlet
 - Outfall

- Line
 - Conduit
 - Channel
 - Pressure pipe
 - Gutter
- Polygon
 - Catchment
 - Pond

Basic Principles

Conservation of Mass

$$S(t + \Delta t) = S(t) + I(t)\Delta t - Q(t)\Delta t$$

Conservation of Energy

$$y_1 + z_1 + \frac{v_1^2}{2g} = y_2 + z_2 + \frac{v_2^2}{2g} + h_f$$

Manning's

$$Q = \frac{k}{n} A R_h^{2/3} S^{1/2}$$

What Causes Unsteady Flow?

- Pumps cycling
- Wet weather I/I
- Batch processes
- Normal diurnal water use variation
- Occurs in sanitary, combined and stormwater systems

Unsteady Flow

- Can't just slide hydrograph downstream
- Increase in flow shows up as
 - Increase outflow
 - Increase depth (horizontal storage)
- Depends on nature of system

Hydrograph Routing

Routing Methods

- Hydrologic
 - Mukingum
 - Puls
 - Kinematic wave
 - Convex
- Hydraulic
 - St. Venant equations

Fully dynamic model? Solves full St. Venant equations for 1-D flow in open channels

Continuity

$$\frac{\partial y}{\partial t} + y\frac{\partial u}{\partial x} + u\frac{\partial y}{\partial x} = 0$$

Momentum

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + g\frac{\partial y}{\partial x} - g(S_x - S_f) = 0$$

Normal Depth

Gradually varied surcharged flow

Bentley Dynamic Models

- Solve full St. Venant equations
- Use stable implicit finite difference solution
- Based on FLDWAV
- Routes hydrographs
- Handles surcharging, overflows, backups
- Handles pipes, channels, ponds, pumps
- Used in CSD, SewerGEMS

Special Situations

- Surcharging
- Dry pipes
- Drop structures
- Pump cycling
Handling Pressure Flow

Start Type

- Can start with dry pipe
- Can "warm-up" model up to time 0
- Warm up time depends on system
- Experiment to find best warm up

Convergence Tips

- Avoid very short pipes
- Make computation time step shorter
- Move N-R weighting coefficient closer to one
- Decrease computation distance
- Test with no weir flow

A Picture is Worth 10³ Words

Single Element Over Time

 Shows one attribute for one element over time

Scenario Comparison over Time

 Used to compare single attribute over time between scenarios

Element Comparison over Time

 Compare attribute for an element over time for single scenario

Element Scenario over Time

• Can include different elements and scenarios for a single attribute over time

Graphing Controls

- Graph Series Option (SewerGEMS choices)
 - Attribute (fields)
 - Element
 - Scenario
- Chart Options (Graphics choices)
 - Chart tab
 - Axis, title, legend
 - Click on individual series properties
 - Series tab
 - Format, marks

Graphing Tips

- Checking/unchecking "visible" turns things on/off
- Default for legend is outside; use "custom" to move inside
- Set display number of digits in "data" tab or in options
- Background under "panel" tab
- "Marks" refers to placing actual value on graph
- There is no "Undo"; Save work frequently

Dynamic Wave Routing

Because life is dynamic

Sanitary Systems

Sanitary Sewer Systems

- Designed for sanitary loads
- Should be minimal wet weather I/I
 - Inflow / Infiltration
 - -Problems usually caused by I/I
 - -Must understand dry weather flow
- I/I enters through defects
 - -Manholes
 - -Joints
 - -Illegal connections

Sanitary Sewer Modeling

- System design
- System capacity analysis
- Steady, gradually varied flow analysis
- Overflows
- Compliance with Capacity management operation and maintenance (CMOM)

Sanitary Sewer Design

- Dendritic layout
- Controlled by
 - Loading
 - Min and max slopes
 - Right of way and conflicts
- Min pipe size usually 8 in.

Sanitary Sewer Overflows (SSO)

- SSO not permitted
- Understand cause
 - -Maintenance (roots, grease)
 - -Lack of capacity (growth)
 - -RDII (wet weather only)
- Model can help identify cause, remedial action
- Combine modeling and monitoring

Solving Overflows

- Compare model with monitoring
- Find flow and hydraulic properties that match monitoring
- Propose solutions
 - -I/I control
 - Increase capacity
 - -Storage
- Model proposed solutions

Dry Weather Loads

- Referred to as:
 - Usage
 - Demand
 - Loading
- Loads are assigned to nodes
- Must add in wet weather loads
- Wide variety of data sources

PLACING LOADS AT NODES

Q(load) << Q(in)

Steps in Loading Model

- Current year average day
- Peaking and temporal variations
- Wet weather flows
- Projections

Loading Projections

Usually provided by city or regional planners.

Get others to "sign off" on population projections.

Where will high growth be? Where will large water users be?

Future water conservation and per capita usage rates

Alternative loading projections

Average Load

Loading Methods in SewerGEMS

- Sanitary loading
 - -Hydrograph
 - -Unit load x count (with pattern)
 - -Base flow x pattern
- Inflow
 - -Fixed inflow
 - -Hydrograph
 - -Base flow x pattern
- Catchment runoff
- Pipe infiltration

Unit Loading

- Unit load
 - Home
 - Restaurant per customer
 - Office per employee
- Default values available
- User provides count (population)
- Pattern setup assigns pattern to load type

Patterns

- Multiplier x base flow
- Base on flow metering for dry day
- Assign patterns to nodes

 Few patterns, many nodes
- Repeat each period (24 hrs)

Dry Weather Loading Patterns Define patterns by demand types: e.g. residential - industrial - commercial

- For large water users, use actual water use patterns
- Data logging
- Literature values can provide first guess – very system specific
- Patterns can vary by season/day of week

Patterns: Stepwise or Continuous

CONTINUOUS

TIME

Typical Loading Patterns

Flow Balance

For given time period Load = V(in) - V(out) +/- Storage

Define area where all flows and levels are known

Flow = Usage/Time

Multiplier = Flow/(Average Flow)

Combined Sewers

- Carry wastewater and stormwater
- Overflows permitted in wet weather
- No dry weather overflows
- Nine minimum controls

Key Terminology

Types of Sewer Flow

Separate Sanitary Sewers

Combined Sewers

Typical CSO

From System

From System

Weir Control

To Treatment

To Overflo

Nine Minimum Controls

- Proper O&M
- Maximize use of storage
- Modify pretreatment requirements
- Maximize flow to POTW
- Eliminate dry weather CSOs
- Control solids and floatables
- Pollution prevention
- Public notification of impacts
- Monitor impacts and controls

Modeling Diversions

- Dynamic waver calculates flow split
- Control structures (pipe property)
 - Weir
 - Orifice
 - Functions $Q = a(H-weir)^{b}$
 - Depth vs. flow curve
- Stability issues small time steps
- Hydrologic routine rating table

Combined System Loading

- Uses both Inflow and Sanitary
- Sanitary dry weather flow
- Inflow/Infiltration wet weather flow

Modeling CSOs

- Determine magnitude of event that causes
 overflow
- Determine volume of overflow vs. event
- From event frequency, can identify overflow volume
- Long term simulation

CSO Solutions

- Sewer separation
- Storage of wet weather flow
- No new combined systems in EMEA
- Combined sewers common elsewhere
- Modeling important

Selection Sets

- Can define groups of elements for graphics or tables
- Useful for finding things in large models
- Can use queries to create sets
- View with Drawing Navigator

Questions and Answers

Thank you